1
0

rook storage working

This commit is contained in:
michael 2022-11-02 22:18:55 +13:00
parent 4d4977b164
commit d9a28d21a8
16 changed files with 16648 additions and 24 deletions

View File

@ -10,8 +10,8 @@ An outline of the steps, which are roughly broken up by playbook:
- [x] Deploy 3 (or more) VMs from the template (uses backing store qcow images) - [Link](https://code.balsillie.net/michael/IaC/src/branch/master/ansible/playbooks/04_vm_deploy.yaml) - [x] Deploy 3 (or more) VMs from the template (uses backing store qcow images) - [Link](https://code.balsillie.net/michael/IaC/src/branch/master/ansible/playbooks/04_vm_deploy.yaml)
- [x] Create a kubernetes cluster from those 3 VMs - [Link](https://code.balsillie.net/michael/IaC/src/branch/master/ansible/playbooks/05_k8s_deploy.yaml) - [x] Create a kubernetes cluster from those 3 VMs - [Link](https://code.balsillie.net/michael/IaC/src/branch/master/ansible/playbooks/05_k8s_deploy.yaml)
- [x] Install calico networking into the cluster. - [x] Install calico networking into the cluster.
- [ ] Remove the taint from control plane nodes. <-- Optional - [x] Remove the taint from control plane nodes. <-- Optional
- [ ] Configure cluster storage, Rook? - [x] Configure cluster storage using rook
- [ ] Deploy workloads into the cluster - [ ] Deploy workloads into the cluster
What you don't see here is setup/configuration of an Opnsense VM to act as a firewall, this is too far off from being possible to automate. What you don't see here is setup/configuration of an Opnsense VM to act as a firewall, this is too far off from being possible to automate.

View File

@ -0,0 +1,7 @@
---
- name: destroy rook storage
hosts: k8s_worker
gather_facts: true
become: true
roles:
- k8s_storage_destroy

View File

@ -112,3 +112,9 @@
--skip-phases=addon/kube-proxy \ --skip-phases=addon/kube-proxy \
--node-name {{ ansible_hostname }} --node-name {{ ansible_hostname }}
creates: /etc/kubernetes/admin.conf creates: /etc/kubernetes/admin.conf
- name: set kubelet service to enabled at startup
ansible.builtin.service:
name: kubelet.service
state: running
enabled: true

View File

@ -1,2 +0,0 @@
---
rook_version: "v1.10.4"

View File

@ -1,17 +0,0 @@
---
- name: create target directory for rook files
ansible.builtin.file:
path: "{{ ansible_search_path[0] }}/files/rook"
state: directory
mode: 0775
- name: download the rook manifests
ansible.builtin.uri:
url: https://raw.githubusercontent.com/rook/rook/{{ rook_version }}/deploy/examples/{{ item }}.yaml
dest: "{{ ansible_search_path[0] }}/files/rook/rook_{{ item }}_{{ rook_version }}.yaml"
creates: "{{ ansible_search_path[0] }}/files/rook/rook_{{ item }}_{{ rook_version }}.yaml"
mode: 0664
with_items:
- operator
- crds
- common

View File

@ -0,0 +1,4 @@
---
rook_version: "v1.10.4"
k8s_storage_all_devices: false
k8s_storage_device_filter: ^sd[ab]

View File

@ -0,0 +1,91 @@
apiVersion: ceph.rook.io/v1
kind: CephCluster
metadata:
name: rook-ceph
namespace: rook-ceph
spec:
annotations: null
cephVersion:
allowUnsupported: false
image: quay.io/ceph/ceph:v17.2.3
cleanupPolicy:
allowUninstallWithVolumes: false
confirmation: ''
sanitizeDisks:
dataSource: zero
iteration: 1
method: quick
continueUpgradeAfterChecksEvenIfNotHealthy: false
crashCollector:
disable: false
dashboard:
enabled: true
ssl: true
dataDirHostPath: /var/lib/rook
disruptionManagement:
machineDisruptionBudgetNamespace: openshift-machine-api
manageMachineDisruptionBudgets: false
managePodBudgets: true
osdMaintenanceTimeout: 30
pgHealthCheckTimeout: 0
healthCheck:
daemonHealth:
mon:
disabled: false
interval: 45s
osd:
disabled: false
interval: 60s
status:
disabled: false
interval: 60s
livenessProbe:
mgr:
disabled: false
mon:
disabled: false
osd:
disabled: false
startupProbe:
mgr:
disabled: false
mon:
disabled: false
osd:
disabled: false
labels: null
logCollector:
enabled: true
maxLogSize: 500M
periodicity: daily
mgr:
allowMultiplePerNode: false
count: 2
modules:
- enabled: true
name: pg_autoscaler
mon:
allowMultiplePerNode: false
count: 3
monitoring:
enabled: false
network:
connections:
compression:
enabled: false
encryption:
enabled: false
priorityClassNames:
mgr: system-cluster-critical
mon: system-node-critical
osd: system-node-critical
removeOSDsIfOutAndSafeToRemove: false
resources: null
skipUpgradeChecks: false
storage:
config: null
deviceFilter: ^sd[ab]
onlyApplyOSDPlacement: false
useAllDevices: false
useAllNodes: true
waitTimeoutForHealthyOSDInMinutes: 10

View File

@ -0,0 +1,298 @@
#################################################################################################################
# Define the settings for the rook-ceph cluster with common settings for a production cluster.
# All nodes with available raw devices will be used for the Ceph cluster. At least three nodes are required
# in this example. See the documentation for more details on storage settings available.
# For example, to create the cluster:
# kubectl create -f crds.yaml -f common.yaml -f operator.yaml
# kubectl create -f cluster.yaml
#################################################################################################################
apiVersion: ceph.rook.io/v1
kind: CephCluster
metadata:
name: rook-ceph
namespace: rook-ceph # namespace:cluster
spec:
cephVersion:
# The container image used to launch the Ceph daemon pods (mon, mgr, osd, mds, rgw).
# v16 is Pacific, and v17 is Quincy.
# RECOMMENDATION: In production, use a specific version tag instead of the general v17 flag, which pulls the latest release and could result in different
# versions running within the cluster. See tags available at https://hub.docker.com/r/ceph/ceph/tags/.
# If you want to be more precise, you can always use a timestamp tag such quay.io/ceph/ceph:v17.2.3-20220805
# This tag might not contain a new Ceph version, just security fixes from the underlying operating system, which will reduce vulnerabilities
image: quay.io/ceph/ceph:v17.2.3
# Whether to allow unsupported versions of Ceph. Currently `pacific` and `quincy` are supported.
# Future versions such as `reef` (v18) would require this to be set to `true`.
# Do not set to true in production.
allowUnsupported: false
# The path on the host where configuration files will be persisted. Must be specified.
# Important: if you reinstall the cluster, make sure you delete this directory from each host or else the mons will fail to start on the new cluster.
# In Minikube, the '/data' directory is configured to persist across reboots. Use "/data/rook" in Minikube environment.
dataDirHostPath: /var/lib/rook
# Whether or not upgrade should continue even if a check fails
# This means Ceph's status could be degraded and we don't recommend upgrading but you might decide otherwise
# Use at your OWN risk
# To understand Rook's upgrade process of Ceph, read https://rook.io/docs/rook/latest/ceph-upgrade.html#ceph-version-upgrades
skipUpgradeChecks: false
# Whether or not continue if PGs are not clean during an upgrade
continueUpgradeAfterChecksEvenIfNotHealthy: false
# WaitTimeoutForHealthyOSDInMinutes defines the time (in minutes) the operator would wait before an OSD can be stopped for upgrade or restart.
# If the timeout exceeds and OSD is not ok to stop, then the operator would skip upgrade for the current OSD and proceed with the next one
# if `continueUpgradeAfterChecksEvenIfNotHealthy` is `false`. If `continueUpgradeAfterChecksEvenIfNotHealthy` is `true`, then operator would
# continue with the upgrade of an OSD even if its not ok to stop after the timeout. This timeout won't be applied if `skipUpgradeChecks` is `true`.
# The default wait timeout is 10 minutes.
waitTimeoutForHealthyOSDInMinutes: 10
mon:
# Set the number of mons to be started. Generally recommended to be 3.
# For highest availability, an odd number of mons should be specified.
count: 3
# The mons should be on unique nodes. For production, at least 3 nodes are recommended for this reason.
# Mons should only be allowed on the same node for test environments where data loss is acceptable.
allowMultiplePerNode: false
mgr:
# When higher availability of the mgr is needed, increase the count to 2.
# In that case, one mgr will be active and one in standby. When Ceph updates which
# mgr is active, Rook will update the mgr services to match the active mgr.
count: 2
allowMultiplePerNode: false
modules:
# Several modules should not need to be included in this list. The "dashboard" and "monitoring" modules
# are already enabled by other settings in the cluster CR.
- name: pg_autoscaler
enabled: true
# enable the ceph dashboard for viewing cluster status
dashboard:
enabled: true
# serve the dashboard under a subpath (useful when you are accessing the dashboard via a reverse proxy)
# urlPrefix: /ceph-dashboard
# serve the dashboard at the given port.
# port: 8443
# serve the dashboard using SSL
ssl: true
# enable prometheus alerting for cluster
monitoring:
# requires Prometheus to be pre-installed
enabled: false
network:
connections:
# Whether to encrypt the data in transit across the wire to prevent eavesdropping the data on the network.
# The default is false. When encryption is enabled, all communication between clients and Ceph daemons, or between Ceph daemons will be encrypted.
# When encryption is not enabled, clients still establish a strong initial authentication and data integrity is still validated with a crc check.
# IMPORTANT: Encryption requires the 5.11 kernel for the latest nbd and cephfs drivers. Alternatively for testing only,
# you can set the "mounter: rbd-nbd" in the rbd storage class, or "mounter: fuse" in the cephfs storage class.
# The nbd and fuse drivers are *not* recommended in production since restarting the csi driver pod will disconnect the volumes.
encryption:
enabled: false
# Whether to compress the data in transit across the wire. The default is false.
# Requires Ceph Quincy (v17) or newer. Also see the kernel requirements above for encryption.
compression:
enabled: false
# enable host networking
#provider: host
# enable the Multus network provider
#provider: multus
#selectors:
# The selector keys are required to be `public` and `cluster`.
# Based on the configuration, the operator will do the following:
# 1. if only the `public` selector key is specified both public_network and cluster_network Ceph settings will listen on that interface
# 2. if both `public` and `cluster` selector keys are specified the first one will point to 'public_network' flag and the second one to 'cluster_network'
#
# In order to work, each selector value must match a NetworkAttachmentDefinition object in Multus
#
#public: public-conf --> NetworkAttachmentDefinition object name in Multus
#cluster: cluster-conf --> NetworkAttachmentDefinition object name in Multus
# Provide internet protocol version. IPv6, IPv4 or empty string are valid options. Empty string would mean IPv4
#ipFamily: "IPv6"
# Ceph daemons to listen on both IPv4 and Ipv6 networks
#dualStack: false
# enable the crash collector for ceph daemon crash collection
crashCollector:
disable: false
# Uncomment daysToRetain to prune ceph crash entries older than the
# specified number of days.
#daysToRetain: 30
# enable log collector, daemons will log on files and rotate
logCollector:
enabled: true
periodicity: daily # one of: hourly, daily, weekly, monthly
maxLogSize: 500M # SUFFIX may be 'M' or 'G'. Must be at least 1M.
# automate [data cleanup process](https://github.com/rook/rook/blob/master/Documentation/Storage-Configuration/ceph-teardown.md#delete-the-data-on-hosts) in cluster destruction.
cleanupPolicy:
# Since cluster cleanup is destructive to data, confirmation is required.
# To destroy all Rook data on hosts during uninstall, confirmation must be set to "yes-really-destroy-data".
# This value should only be set when the cluster is about to be deleted. After the confirmation is set,
# Rook will immediately stop configuring the cluster and only wait for the delete command.
# If the empty string is set, Rook will not destroy any data on hosts during uninstall.
confirmation: ""
# sanitizeDisks represents settings for sanitizing OSD disks on cluster deletion
sanitizeDisks:
# method indicates if the entire disk should be sanitized or simply ceph's metadata
# in both case, re-install is possible
# possible choices are 'complete' or 'quick' (default)
method: quick
# dataSource indicate where to get random bytes from to write on the disk
# possible choices are 'zero' (default) or 'random'
# using random sources will consume entropy from the system and will take much more time then the zero source
dataSource: zero
# iteration overwrite N times instead of the default (1)
# takes an integer value
iteration: 1
# allowUninstallWithVolumes defines how the uninstall should be performed
# If set to true, cephCluster deletion does not wait for the PVs to be deleted.
allowUninstallWithVolumes: false
# To control where various services will be scheduled by kubernetes, use the placement configuration sections below.
# The example under 'all' would have all services scheduled on kubernetes nodes labeled with 'role=storage-node' and
# tolerate taints with a key of 'storage-node'.
# placement:
# all:
# nodeAffinity:
# requiredDuringSchedulingIgnoredDuringExecution:
# nodeSelectorTerms:
# - matchExpressions:
# - key: role
# operator: In
# values:
# - storage-node
# podAffinity:
# podAntiAffinity:
# topologySpreadConstraints:
# tolerations:
# - key: storage-node
# operator: Exists
# The above placement information can also be specified for mon, osd, and mgr components
# mon:
# Monitor deployments may contain an anti-affinity rule for avoiding monitor
# collocation on the same node. This is a required rule when host network is used
# or when AllowMultiplePerNode is false. Otherwise this anti-affinity rule is a
# preferred rule with weight: 50.
# osd:
# prepareosd:
# mgr:
# cleanup:
annotations:
# all:
# mon:
# osd:
# cleanup:
# prepareosd:
# clusterMetadata annotations will be applied to only `rook-ceph-mon-endpoints` configmap and the `rook-ceph-mon` and `rook-ceph-admin-keyring` secrets.
# And clusterMetadata annotations will not be merged with `all` annotations.
# clusterMetadata:
# kubed.appscode.com/sync: "true"
# If no mgr annotations are set, prometheus scrape annotations will be set by default.
# mgr:
labels:
# all:
# mon:
# osd:
# cleanup:
# mgr:
# prepareosd:
# monitoring is a list of key-value pairs. It is injected into all the monitoring resources created by operator.
# These labels can be passed as LabelSelector to Prometheus
# monitoring:
# crashcollector:
resources:
# The requests and limits set here, allow the mgr pod to use half of one CPU core and 1 gigabyte of memory
# mgr:
# limits:
# cpu: "500m"
# memory: "1024Mi"
# requests:
# cpu: "500m"
# memory: "1024Mi"
# The above example requests/limits can also be added to the other components
# mon:
# osd:
# For OSD it also is a possible to specify requests/limits based on device class
# osd-hdd:
# osd-ssd:
# osd-nvme:
# prepareosd:
# mgr-sidecar:
# crashcollector:
# logcollector:
# cleanup:
# The option to automatically remove OSDs that are out and are safe to destroy.
removeOSDsIfOutAndSafeToRemove: false
priorityClassNames:
#all: rook-ceph-default-priority-class
mon: system-node-critical
osd: system-node-critical
mgr: system-cluster-critical
#crashcollector: rook-ceph-crashcollector-priority-class
storage: # cluster level storage configuration and selection
useAllNodes: true
useAllDevices: true
#deviceFilter:
config:
# crushRoot: "custom-root" # specify a non-default root label for the CRUSH map
# metadataDevice: "md0" # specify a non-rotational storage so ceph-volume will use it as block db device of bluestore.
# databaseSizeMB: "1024" # uncomment if the disks are smaller than 100 GB
# journalSizeMB: "1024" # uncomment if the disks are 20 GB or smaller
# osdsPerDevice: "1" # this value can be overridden at the node or device level
# encryptedDevice: "true" # the default value for this option is "false"
# Individual nodes and their config can be specified as well, but 'useAllNodes' above must be set to false. Then, only the named
# nodes below will be used as storage resources. Each node's 'name' field should match their 'kubernetes.io/hostname' label.
# nodes:
# - name: "172.17.4.201"
# devices: # specific devices to use for storage can be specified for each node
# - name: "sdb"
# - name: "nvme01" # multiple osds can be created on high performance devices
# config:
# osdsPerDevice: "5"
# - name: "/dev/disk/by-id/ata-ST4000DM004-XXXX" # devices can be specified using full udev paths
# config: # configuration can be specified at the node level which overrides the cluster level config
# - name: "172.17.4.301"
# deviceFilter: "^sd."
# when onlyApplyOSDPlacement is false, will merge both placement.All() and placement.osd
onlyApplyOSDPlacement: false
# The section for configuring management of daemon disruptions during upgrade or fencing.
disruptionManagement:
# If true, the operator will create and manage PodDisruptionBudgets for OSD, Mon, RGW, and MDS daemons. OSD PDBs are managed dynamically
# via the strategy outlined in the [design](https://github.com/rook/rook/blob/master/design/ceph/ceph-managed-disruptionbudgets.md). The operator will
# block eviction of OSDs by default and unblock them safely when drains are detected.
managePodBudgets: true
# A duration in minutes that determines how long an entire failureDomain like `region/zone/host` will be held in `noout` (in addition to the
# default DOWN/OUT interval) when it is draining. This is only relevant when `managePodBudgets` is `true`. The default value is `30` minutes.
osdMaintenanceTimeout: 30
# A duration in minutes that the operator will wait for the placement groups to become healthy (active+clean) after a drain was completed and OSDs came back up.
# Operator will continue with the next drain if the timeout exceeds. It only works if `managePodBudgets` is `true`.
# No values or 0 means that the operator will wait until the placement groups are healthy before unblocking the next drain.
pgHealthCheckTimeout: 0
# If true, the operator will create and manage MachineDisruptionBudgets to ensure OSDs are only fenced when the cluster is healthy.
# Only available on OpenShift.
manageMachineDisruptionBudgets: false
# Namespace in which to watch for the MachineDisruptionBudgets.
machineDisruptionBudgetNamespace: openshift-machine-api
# healthChecks
# Valid values for daemons are 'mon', 'osd', 'status'
healthCheck:
daemonHealth:
mon:
disabled: false
interval: 45s
osd:
disabled: false
interval: 60s
status:
disabled: false
interval: 60s
# Change pod liveness probe timing or threshold values. Works for all mon,mgr,osd daemons.
livenessProbe:
mon:
disabled: false
mgr:
disabled: false
osd:
disabled: false
# Change pod startup probe timing or threshold values. Works for all mon,mgr,osd daemons.
startupProbe:
mon:
disabled: false
mgr:
disabled: false
osd:
disabled: false

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,646 @@
#################################################################################################################
# The deployment for the rook operator
# Contains the common settings for most Kubernetes deployments.
# For example, to create the rook-ceph cluster:
# kubectl create -f crds.yaml -f common.yaml -f operator.yaml
# kubectl create -f cluster.yaml
#
# Also see other operator sample files for variations of operator.yaml:
# - operator-openshift.yaml: Common settings for running in OpenShift
###############################################################################################################
# Rook Ceph Operator Config ConfigMap
# Use this ConfigMap to override Rook-Ceph Operator configurations.
# NOTE! Precedence will be given to this config if the same Env Var config also exists in the
# Operator Deployment.
# To move a configuration(s) from the Operator Deployment to this ConfigMap, add the config
# here. It is recommended to then remove it from the Deployment to eliminate any future confusion.
kind: ConfigMap
apiVersion: v1
metadata:
name: rook-ceph-operator-config
# should be in the namespace of the operator
namespace: rook-ceph # namespace:operator
data:
# The logging level for the operator: ERROR | WARNING | INFO | DEBUG
ROOK_LOG_LEVEL: "INFO"
# Enable the CSI driver.
# To run the non-default version of the CSI driver, see the override-able image properties in operator.yaml
ROOK_CSI_ENABLE_CEPHFS: "true"
# Enable the default version of the CSI RBD driver. To start another version of the CSI driver, see image properties below.
ROOK_CSI_ENABLE_RBD: "true"
# Enable the CSI NFS driver. To start another version of the CSI driver, see image properties below.
ROOK_CSI_ENABLE_NFS: "false"
ROOK_CSI_ENABLE_GRPC_METRICS: "false"
# Set to true to enable Ceph CSI pvc encryption support.
CSI_ENABLE_ENCRYPTION: "false"
# Set to true to enable host networking for CSI CephFS and RBD nodeplugins. This may be necessary
# in some network configurations where the SDN does not provide access to an external cluster or
# there is significant drop in read/write performance.
# CSI_ENABLE_HOST_NETWORK: "true"
# Set to true to enable adding volume metadata on the CephFS subvolume and RBD images.
# Not all users might be interested in getting volume/snapshot details as metadata on CephFS subvolume and RBD images.
# Hence enable metadata is false by default.
# CSI_ENABLE_METADATA: "true"
# cluster name identifier to set as metadata on the CephFS subvolume and RBD images. This will be useful in cases
# like for example, when two container orchestrator clusters (Kubernetes/OCP) are using a single ceph cluster.
# CSI_CLUSTER_NAME: "my-prod-cluster"
# Set logging level for cephCSI containers maintained by the cephCSI.
# Supported values from 0 to 5. 0 for general useful logs, 5 for trace level verbosity.
# CSI_LOG_LEVEL: "0"
# Set logging level for Kubernetes-csi sidecar containers.
# Supported values from 0 to 5. 0 for general useful logs (the default), 5 for trace level verbosity.
# CSI_SIDECAR_LOG_LEVEL: "0"
# Set replicas for csi provisioner deployment.
CSI_PROVISIONER_REPLICAS: "2"
# OMAP generator will generate the omap mapping between the PV name and the RBD image.
# CSI_ENABLE_OMAP_GENERATOR need to be enabled when we are using rbd mirroring feature.
# By default OMAP generator sidecar is deployed with CSI provisioner pod, to disable
# it set it to false.
# CSI_ENABLE_OMAP_GENERATOR: "false"
# set to false to disable deployment of snapshotter container in CephFS provisioner pod.
CSI_ENABLE_CEPHFS_SNAPSHOTTER: "true"
# set to false to disable deployment of snapshotter container in NFS provisioner pod.
CSI_ENABLE_NFS_SNAPSHOTTER: "true"
# set to false to disable deployment of snapshotter container in RBD provisioner pod.
CSI_ENABLE_RBD_SNAPSHOTTER: "true"
# Enable cephfs kernel driver instead of ceph-fuse.
# If you disable the kernel client, your application may be disrupted during upgrade.
# See the upgrade guide: https://rook.io/docs/rook/latest/ceph-upgrade.html
# NOTE! cephfs quota is not supported in kernel version < 4.17
CSI_FORCE_CEPHFS_KERNEL_CLIENT: "true"
# (Optional) policy for modifying a volume's ownership or permissions when the RBD PVC is being mounted.
# supported values are documented at https://kubernetes-csi.github.io/docs/support-fsgroup.html
CSI_RBD_FSGROUPPOLICY: "File"
# (Optional) policy for modifying a volume's ownership or permissions when the CephFS PVC is being mounted.
# supported values are documented at https://kubernetes-csi.github.io/docs/support-fsgroup.html
CSI_CEPHFS_FSGROUPPOLICY: "File"
# (Optional) policy for modifying a volume's ownership or permissions when the NFS PVC is being mounted.
# supported values are documented at https://kubernetes-csi.github.io/docs/support-fsgroup.html
CSI_NFS_FSGROUPPOLICY: "File"
# (Optional) Allow starting unsupported ceph-csi image
ROOK_CSI_ALLOW_UNSUPPORTED_VERSION: "false"
# (Optional) control the host mount of /etc/selinux for csi plugin pods.
CSI_PLUGIN_ENABLE_SELINUX_HOST_MOUNT: "false"
# The default version of CSI supported by Rook will be started. To change the version
# of the CSI driver to something other than what is officially supported, change
# these images to the desired release of the CSI driver.
# ROOK_CSI_CEPH_IMAGE: "quay.io/cephcsi/cephcsi:v3.7.2"
# ROOK_CSI_REGISTRAR_IMAGE: "registry.k8s.io/sig-storage/csi-node-driver-registrar:v2.5.1"
# ROOK_CSI_RESIZER_IMAGE: "registry.k8s.io/sig-storage/csi-resizer:v1.6.0"
# ROOK_CSI_PROVISIONER_IMAGE: "registry.k8s.io/sig-storage/csi-provisioner:v3.3.0"
# ROOK_CSI_SNAPSHOTTER_IMAGE: "registry.k8s.io/sig-storage/csi-snapshotter:v6.1.0"
# ROOK_CSI_ATTACHER_IMAGE: "registry.k8s.io/sig-storage/csi-attacher:v4.0.0"
# To indicate the image pull policy to be applied to all the containers in the csi driver pods.
# ROOK_CSI_IMAGE_PULL_POLICY: "IfNotPresent"
# (Optional) set user created priorityclassName for csi plugin pods.
CSI_PLUGIN_PRIORITY_CLASSNAME: "system-node-critical"
# (Optional) set user created priorityclassName for csi provisioner pods.
CSI_PROVISIONER_PRIORITY_CLASSNAME: "system-cluster-critical"
# CSI CephFS plugin daemonset update strategy, supported values are OnDelete and RollingUpdate.
# Default value is RollingUpdate.
# CSI_CEPHFS_PLUGIN_UPDATE_STRATEGY: "OnDelete"
# CSI RBD plugin daemonset update strategy, supported values are OnDelete and RollingUpdate.
# Default value is RollingUpdate.
# CSI_RBD_PLUGIN_UPDATE_STRATEGY: "OnDelete"
# CSI NFS plugin daemonset update strategy, supported values are OnDelete and RollingUpdate.
# Default value is RollingUpdate.
# CSI_NFS_PLUGIN_UPDATE_STRATEGY: "OnDelete"
# kubelet directory path, if kubelet configured to use other than /var/lib/kubelet path.
# ROOK_CSI_KUBELET_DIR_PATH: "/var/lib/kubelet"
# Labels to add to the CSI CephFS Deployments and DaemonSets Pods.
# ROOK_CSI_CEPHFS_POD_LABELS: "key1=value1,key2=value2"
# Labels to add to the CSI RBD Deployments and DaemonSets Pods.
# ROOK_CSI_RBD_POD_LABELS: "key1=value1,key2=value2"
# Labels to add to the CSI NFS Deployments and DaemonSets Pods.
# ROOK_CSI_NFS_POD_LABELS: "key1=value1,key2=value2"
# (Optional) CephCSI CephFS plugin Volumes
# CSI_CEPHFS_PLUGIN_VOLUME: |
# - name: lib-modules
# hostPath:
# path: /run/current-system/kernel-modules/lib/modules/
# - name: host-nix
# hostPath:
# path: /nix
# (Optional) CephCSI CephFS plugin Volume mounts
# CSI_CEPHFS_PLUGIN_VOLUME_MOUNT: |
# - name: host-nix
# mountPath: /nix
# readOnly: true
# (Optional) CephCSI RBD plugin Volumes
# CSI_RBD_PLUGIN_VOLUME: |
# - name: lib-modules
# hostPath:
# path: /run/current-system/kernel-modules/lib/modules/
# - name: host-nix
# hostPath:
# path: /nix
# (Optional) CephCSI RBD plugin Volume mounts
# CSI_RBD_PLUGIN_VOLUME_MOUNT: |
# - name: host-nix
# mountPath: /nix
# readOnly: true
# (Optional) CephCSI provisioner NodeAffinity (applied to both CephFS and RBD provisioner).
# CSI_PROVISIONER_NODE_AFFINITY: "role=storage-node; storage=rook, ceph"
# (Optional) CephCSI provisioner tolerations list(applied to both CephFS and RBD provisioner).
# Put here list of taints you want to tolerate in YAML format.
# CSI provisioner would be best to start on the same nodes as other ceph daemons.
# CSI_PROVISIONER_TOLERATIONS: |
# - effect: NoSchedule
# key: node-role.kubernetes.io/control-plane
# operator: Exists
# - effect: NoExecute
# key: node-role.kubernetes.io/etcd
# operator: Exists
# (Optional) CephCSI plugin NodeAffinity (applied to both CephFS and RBD plugin).
# CSI_PLUGIN_NODE_AFFINITY: "role=storage-node; storage=rook, ceph"
# (Optional) CephCSI plugin tolerations list(applied to both CephFS and RBD plugin).
# Put here list of taints you want to tolerate in YAML format.
# CSI plugins need to be started on all the nodes where the clients need to mount the storage.
# CSI_PLUGIN_TOLERATIONS: |
# - effect: NoSchedule
# key: node-role.kubernetes.io/control-plane
# operator: Exists
# - effect: NoExecute
# key: node-role.kubernetes.io/etcd
# operator: Exists
# (Optional) CephCSI RBD provisioner NodeAffinity (if specified, overrides CSI_PROVISIONER_NODE_AFFINITY).
# CSI_RBD_PROVISIONER_NODE_AFFINITY: "role=rbd-node"
# (Optional) CephCSI RBD provisioner tolerations list(if specified, overrides CSI_PROVISIONER_TOLERATIONS).
# Put here list of taints you want to tolerate in YAML format.
# CSI provisioner would be best to start on the same nodes as other ceph daemons.
# CSI_RBD_PROVISIONER_TOLERATIONS: |
# - key: node.rook.io/rbd
# operator: Exists
# (Optional) CephCSI RBD plugin NodeAffinity (if specified, overrides CSI_PLUGIN_NODE_AFFINITY).
# CSI_RBD_PLUGIN_NODE_AFFINITY: "role=rbd-node"
# (Optional) CephCSI RBD plugin tolerations list(if specified, overrides CSI_PLUGIN_TOLERATIONS).
# Put here list of taints you want to tolerate in YAML format.
# CSI plugins need to be started on all the nodes where the clients need to mount the storage.
# CSI_RBD_PLUGIN_TOLERATIONS: |
# - key: node.rook.io/rbd
# operator: Exists
# (Optional) CephCSI CephFS provisioner NodeAffinity (if specified, overrides CSI_PROVISIONER_NODE_AFFINITY).
# CSI_CEPHFS_PROVISIONER_NODE_AFFINITY: "role=cephfs-node"
# (Optional) CephCSI CephFS provisioner tolerations list(if specified, overrides CSI_PROVISIONER_TOLERATIONS).
# Put here list of taints you want to tolerate in YAML format.
# CSI provisioner would be best to start on the same nodes as other ceph daemons.
# CSI_CEPHFS_PROVISIONER_TOLERATIONS: |
# - key: node.rook.io/cephfs
# operator: Exists
# (Optional) CephCSI CephFS plugin NodeAffinity (if specified, overrides CSI_PLUGIN_NODE_AFFINITY).
# CSI_CEPHFS_PLUGIN_NODE_AFFINITY: "role=cephfs-node"
# NOTE: Support for defining NodeAffinity for operators other than "In" and "Exists" requires the user to input a
# valid v1.NodeAffinity JSON or YAML string. For example, the following is valid YAML v1.NodeAffinity:
# CSI_CEPHFS_PLUGIN_NODE_AFFINITY: |
# requiredDuringSchedulingIgnoredDuringExecution:
# nodeSelectorTerms:
# - matchExpressions:
# - key: myKey
# operator: DoesNotExist
# (Optional) CephCSI CephFS plugin tolerations list(if specified, overrides CSI_PLUGIN_TOLERATIONS).
# Put here list of taints you want to tolerate in YAML format.
# CSI plugins need to be started on all the nodes where the clients need to mount the storage.
# CSI_CEPHFS_PLUGIN_TOLERATIONS: |
# - key: node.rook.io/cephfs
# operator: Exists
# (Optional) CephCSI NFS provisioner NodeAffinity (overrides CSI_PROVISIONER_NODE_AFFINITY).
# CSI_NFS_PROVISIONER_NODE_AFFINITY: "role=nfs-node"
# (Optional) CephCSI NFS provisioner tolerations list (overrides CSI_PROVISIONER_TOLERATIONS).
# Put here list of taints you want to tolerate in YAML format.
# CSI provisioner would be best to start on the same nodes as other ceph daemons.
# CSI_NFS_PROVISIONER_TOLERATIONS: |
# - key: node.rook.io/nfs
# operator: Exists
# (Optional) CephCSI NFS plugin NodeAffinity (overrides CSI_PLUGIN_NODE_AFFINITY).
# CSI_NFS_PLUGIN_NODE_AFFINITY: "role=nfs-node"
# (Optional) CephCSI NFS plugin tolerations list (overrides CSI_PLUGIN_TOLERATIONS).
# Put here list of taints you want to tolerate in YAML format.
# CSI plugins need to be started on all the nodes where the clients need to mount the storage.
# CSI_NFS_PLUGIN_TOLERATIONS: |
# - key: node.rook.io/nfs
# operator: Exists
# (Optional) CEPH CSI RBD provisioner resource requirement list, Put here list of resource
# requests and limits you want to apply for provisioner pod
#CSI_RBD_PROVISIONER_RESOURCE: |
# - name : csi-provisioner
# resource:
# requests:
# memory: 128Mi
# cpu: 100m
# limits:
# memory: 256Mi
# cpu: 200m
# - name : csi-resizer
# resource:
# requests:
# memory: 128Mi
# cpu: 100m
# limits:
# memory: 256Mi
# cpu: 200m
# - name : csi-attacher
# resource:
# requests:
# memory: 128Mi
# cpu: 100m
# limits:
# memory: 256Mi
# cpu: 200m
# - name : csi-snapshotter
# resource:
# requests:
# memory: 128Mi
# cpu: 100m
# limits:
# memory: 256Mi
# cpu: 200m
# - name : csi-rbdplugin
# resource:
# requests:
# memory: 512Mi
# cpu: 250m
# limits:
# memory: 1Gi
# cpu: 500m
# - name : csi-omap-generator
# resource:
# requests:
# memory: 512Mi
# cpu: 250m
# limits:
# memory: 1Gi
# cpu: 500m
# - name : liveness-prometheus
# resource:
# requests:
# memory: 128Mi
# cpu: 50m
# limits:
# memory: 256Mi
# cpu: 100m
# (Optional) CEPH CSI RBD plugin resource requirement list, Put here list of resource
# requests and limits you want to apply for plugin pod
#CSI_RBD_PLUGIN_RESOURCE: |
# - name : driver-registrar
# resource:
# requests:
# memory: 128Mi
# cpu: 50m
# limits:
# memory: 256Mi
# cpu: 100m
# - name : csi-rbdplugin
# resource:
# requests:
# memory: 512Mi
# cpu: 250m
# limits:
# memory: 1Gi
# cpu: 500m
# - name : liveness-prometheus
# resource:
# requests:
# memory: 128Mi
# cpu: 50m
# limits:
# memory: 256Mi
# cpu: 100m
# (Optional) CEPH CSI CephFS provisioner resource requirement list, Put here list of resource
# requests and limits you want to apply for provisioner pod
#CSI_CEPHFS_PROVISIONER_RESOURCE: |
# - name : csi-provisioner
# resource:
# requests:
# memory: 128Mi
# cpu: 100m
# limits:
# memory: 256Mi
# cpu: 200m
# - name : csi-resizer
# resource:
# requests:
# memory: 128Mi
# cpu: 100m
# limits:
# memory: 256Mi
# cpu: 200m
# - name : csi-attacher
# resource:
# requests:
# memory: 128Mi
# cpu: 100m
# limits:
# memory: 256Mi
# cpu: 200m
# - name : csi-snapshotter
# resource:
# requests:
# memory: 128Mi
# cpu: 100m
# limits:
# memory: 256Mi
# cpu: 200m
# - name : csi-cephfsplugin
# resource:
# requests:
# memory: 512Mi
# cpu: 250m
# limits:
# memory: 1Gi
# cpu: 500m
# - name : liveness-prometheus
# resource:
# requests:
# memory: 128Mi
# cpu: 50m
# limits:
# memory: 256Mi
# cpu: 100m
# (Optional) CEPH CSI CephFS plugin resource requirement list, Put here list of resource
# requests and limits you want to apply for plugin pod
#CSI_CEPHFS_PLUGIN_RESOURCE: |
# - name : driver-registrar
# resource:
# requests:
# memory: 128Mi
# cpu: 50m
# limits:
# memory: 256Mi
# cpu: 100m
# - name : csi-cephfsplugin
# resource:
# requests:
# memory: 512Mi
# cpu: 250m
# limits:
# memory: 1Gi
# cpu: 500m
# - name : liveness-prometheus
# resource:
# requests:
# memory: 128Mi
# cpu: 50m
# limits:
# memory: 256Mi
# cpu: 100m
# (Optional) CEPH CSI NFS provisioner resource requirement list, Put here list of resource
# requests and limits you want to apply for provisioner pod
# CSI_NFS_PROVISIONER_RESOURCE: |
# - name : csi-provisioner
# resource:
# requests:
# memory: 128Mi
# cpu: 100m
# limits:
# memory: 256Mi
# cpu: 200m
# - name : csi-nfsplugin
# resource:
# requests:
# memory: 512Mi
# cpu: 250m
# limits:
# memory: 1Gi
# cpu: 500m
# (Optional) CEPH CSI NFS plugin resource requirement list, Put here list of resource
# requests and limits you want to apply for plugin pod
# CSI_NFS_PLUGIN_RESOURCE: |
# - name : driver-registrar
# resource:
# requests:
# memory: 128Mi
# cpu: 50m
# limits:
# memory: 256Mi
# cpu: 100m
# - name : csi-nfsplugin
# resource:
# requests:
# memory: 512Mi
# cpu: 250m
# limits:
# memory: 1Gi
# cpu: 500m
# Configure CSI Ceph FS grpc and liveness metrics port
# Set to true to enable Ceph CSI liveness container.
CSI_ENABLE_LIVENESS: "false"
# CSI_CEPHFS_GRPC_METRICS_PORT: "9091"
# CSI_CEPHFS_LIVENESS_METRICS_PORT: "9081"
# Configure CSI RBD grpc and liveness metrics port
CSI_RBD_GRPC_METRICS_PORT: "9092"
# CSI_RBD_LIVENESS_METRICS_PORT: "9080"
# CSIADDONS_PORT: "9070"
# Whether the OBC provisioner should watch on the operator namespace or not, if not the namespace of the cluster will be used
ROOK_OBC_WATCH_OPERATOR_NAMESPACE: "true"
# Whether to start the discovery daemon to watch for raw storage devices on nodes in the cluster.
# This daemon does not need to run if you are only going to create your OSDs based on StorageClassDeviceSets with PVCs.
ROOK_ENABLE_DISCOVERY_DAEMON: "false"
# The timeout value (in seconds) of Ceph commands. It should be >= 1. If this variable is not set or is an invalid value, it's default to 15.
ROOK_CEPH_COMMANDS_TIMEOUT_SECONDS: "15"
# Enable the csi addons sidecar.
CSI_ENABLE_CSIADDONS: "false"
# ROOK_CSIADDONS_IMAGE: "quay.io/csiaddons/k8s-sidecar:v0.5.0"
# The CSI GRPC timeout value (in seconds). It should be >= 120. If this variable is not set or is an invalid value, it's default to 150.
CSI_GRPC_TIMEOUT_SECONDS: "150"
# Enable topology based provisioning.
CSI_ENABLE_TOPOLOGY: "false"
# Domain labels define which node labels to use as domains
# for CSI nodeplugins to advertise their domains
# NOTE: the value here serves as an example and needs to be
# updated with node labels that define domains of interest
# CSI_TOPOLOGY_DOMAIN_LABELS: "kubernetes.io/hostname,topology.kubernetes.io/zone,topology.rook.io/rack"
---
# OLM: BEGIN OPERATOR DEPLOYMENT
apiVersion: apps/v1
kind: Deployment
metadata:
name: rook-ceph-operator
namespace: rook-ceph # namespace:operator
labels:
operator: rook
storage-backend: ceph
app.kubernetes.io/name: rook-ceph
app.kubernetes.io/instance: rook-ceph
app.kubernetes.io/component: rook-ceph-operator
app.kubernetes.io/part-of: rook-ceph-operator
spec:
selector:
matchLabels:
app: rook-ceph-operator
strategy:
type: Recreate
replicas: 1
template:
metadata:
labels:
app: rook-ceph-operator
spec:
serviceAccountName: rook-ceph-system
containers:
- name: rook-ceph-operator
image: rook/ceph:v1.10.4
args: ["ceph", "operator"]
securityContext:
runAsNonRoot: true
runAsUser: 2016
runAsGroup: 2016
volumeMounts:
- mountPath: /var/lib/rook
name: rook-config
- mountPath: /etc/ceph
name: default-config-dir
- mountPath: /etc/webhook
name: webhook-cert
ports:
- containerPort: 9443
name: https-webhook
protocol: TCP
env:
# If the operator should only watch for cluster CRDs in the same namespace, set this to "true".
# If this is not set to true, the operator will watch for cluster CRDs in all namespaces.
- name: ROOK_CURRENT_NAMESPACE_ONLY
value: "false"
# Rook Discover toleration. Will tolerate all taints with all keys.
# Choose between NoSchedule, PreferNoSchedule and NoExecute:
# - name: DISCOVER_TOLERATION
# value: "NoSchedule"
# (Optional) Rook Discover toleration key. Set this to the key of the taint you want to tolerate
# - name: DISCOVER_TOLERATION_KEY
# value: "<KeyOfTheTaintToTolerate>"
# (Optional) Rook Discover tolerations list. Put here list of taints you want to tolerate in YAML format.
# - name: DISCOVER_TOLERATIONS
# value: |
# - effect: NoSchedule
# key: node-role.kubernetes.io/control-plane
# operator: Exists
# - effect: NoExecute
# key: node-role.kubernetes.io/etcd
# operator: Exists
# (Optional) Rook Discover priority class name to set on the pod(s)
# - name: DISCOVER_PRIORITY_CLASS_NAME
# value: "<PriorityClassName>"
# (Optional) Discover Agent NodeAffinity.
# - name: DISCOVER_AGENT_NODE_AFFINITY
# value: "role=storage-node; storage=rook, ceph"
# (Optional) Discover Agent Pod Labels.
# - name: DISCOVER_AGENT_POD_LABELS
# value: "key1=value1,key2=value2"
# The duration between discovering devices in the rook-discover daemonset.
- name: ROOK_DISCOVER_DEVICES_INTERVAL
value: "60m"
# Whether to start pods as privileged that mount a host path, which includes the Ceph mon and osd pods.
# Set this to true if SELinux is enabled (e.g. OpenShift) to workaround the anyuid issues.
# For more details see https://github.com/rook/rook/issues/1314#issuecomment-355799641
- name: ROOK_HOSTPATH_REQUIRES_PRIVILEGED
value: "false"
# Disable automatic orchestration when new devices are discovered
- name: ROOK_DISABLE_DEVICE_HOTPLUG
value: "false"
# Provide customised regex as the values using comma. For eg. regex for rbd based volume, value will be like "(?i)rbd[0-9]+".
# In case of more than one regex, use comma to separate between them.
# Default regex will be "(?i)dm-[0-9]+,(?i)rbd[0-9]+,(?i)nbd[0-9]+"
# Add regex expression after putting a comma to blacklist a disk
# If value is empty, the default regex will be used.
- name: DISCOVER_DAEMON_UDEV_BLACKLIST
value: "(?i)dm-[0-9]+,(?i)rbd[0-9]+,(?i)nbd[0-9]+"
# Time to wait until the node controller will move Rook pods to other
# nodes after detecting an unreachable node.
# Pods affected by this setting are:
# mgr, rbd, mds, rgw, nfs, PVC based mons and osds, and ceph toolbox
# The value used in this variable replaces the default value of 300 secs
# added automatically by k8s as Toleration for
# <node.kubernetes.io/unreachable>
# The total amount of time to reschedule Rook pods in healthy nodes
# before detecting a <not ready node> condition will be the sum of:
# --> node-monitor-grace-period: 40 seconds (k8s kube-controller-manager flag)
# --> ROOK_UNREACHABLE_NODE_TOLERATION_SECONDS: 5 seconds
- name: ROOK_UNREACHABLE_NODE_TOLERATION_SECONDS
value: "5"
- name: ROOK_DISABLE_ADMISSION_CONTROLLER
value: "false"
# The name of the node to pass with the downward API
- name: NODE_NAME
valueFrom:
fieldRef:
fieldPath: spec.nodeName
# The pod name to pass with the downward API
- name: POD_NAME
valueFrom:
fieldRef:
fieldPath: metadata.name
# The pod namespace to pass with the downward API
- name: POD_NAMESPACE
valueFrom:
fieldRef:
fieldPath: metadata.namespace
# Recommended resource requests and limits, if desired
#resources:
# limits:
# cpu: 500m
# memory: 512Mi
# requests:
# cpu: 100m
# memory: 128Mi
# Uncomment it to run lib bucket provisioner in multithreaded mode
#- name: LIB_BUCKET_PROVISIONER_THREADS
# value: "5"
# Uncomment it to run rook operator on the host network
#hostNetwork: true
volumes:
- name: rook-config
emptyDir: {}
- name: default-config-dir
emptyDir: {}
- name: webhook-cert
emptyDir: {}
# OLM: END OPERATOR DEPLOYMENT

View File

@ -0,0 +1,91 @@
---
- name: create target directory for rook files
ansible.builtin.file:
path: "{{ ansible_search_path[0] }}/files/rook"
state: directory
mode: 0775
- name: load rbd kernel module
become: true
delegate_to: "{{ item }}"
with_items: "{{ groups['k8s_worker'] }}"
community.general.modprobe:
name: rbd
state: present
- name: set rbd kernel module to load at boot
become: true
delegate_to: "{{ item }}"
with_items: "{{ groups['k8s_worker'] }}"
ansible.builtin.copy:
dest: /etc/modules-load.d/rbd.conf
content: rbd
owner: root
group: root
mode: 0660
- name: install lvm2 package
become: true
delegate_to: "{{ item }}"
with_items: "{{ groups['k8s_worker'] }}"
community.general.pacman:
name: lvm2
state: latest
update_cache: true
- name: download the rook manifests
ansible.builtin.uri:
url: https://raw.githubusercontent.com/rook/rook/{{ rook_version }}/deploy/examples/{{ item }}.yaml
dest: "{{ ansible_search_path[0] }}/files/rook/rook_{{ item }}_{{ rook_version }}.yaml"
creates: "{{ ansible_search_path[0] }}/files/rook/rook_{{ item }}_{{ rook_version }}.yaml"
mode: 0664
with_items:
- crds
- common
- operator
- cluster
- name: deploy the rook manifest # The order of the items is important, crds > common > operator , see https://github.com/rook/rook/blob/v1.10.4/deploy/examples/common.yaml
kubernetes.core.k8s:
src: "{{ ansible_search_path[0] }}/files/rook/rook_{{ item }}_{{ rook_version }}.yaml"
state: present
with_items:
- crds
- common
- operator
# TODO somehow turn this command:
# kubectl -n rook-ceph get pod -o json | jq '.items[].status.containerStatuses[].ready'
# into a gate, not proceeding until it returns true, and timing out at some limit, ~2m
- name: read the default rook cluster config into memory
ansible.builtin.slurp:
src: "{{ ansible_search_path[0] }}/files/rook/rook_cluster_{{ rook_version }}.yaml"
register: rook_file_raw
- name: parse rook cluster settings from the file data
ansible.builtin.set_fact:
rook_default_cluster: "{{ rook_file_raw['content'] | b64decode | from_yaml }}"
- name: update the rook cluster settings with desired changes
ansible.utils.update_fact:
updates:
- path: rook_default_cluster.spec.storage.useAllDevices
value: "{{ k8s_storage_all_devices }}"
- path: rook_default_cluster.spec.storage.deviceFilter
value: "{{ k8s_storage_device_filter }}"
register: rook_updated_cluster
- name: debug the updated rook cluster settings
ansible.builtin.debug:
var: rook_updated_cluster.rook_default_cluster
- name: write the updated rook cluster settings out to file
ansible.builtin.copy:
content: "{{ rook_updated_cluster.rook_default_cluster | to_nice_yaml }}"
dest: "{{ ansible_search_path[0] }}/files/rook/rook_cluster_modified.yaml"
- name: apply the rook cluster manifest
kubernetes.core.k8s:
src: "{{ ansible_search_path[0] }}/files/rook/rook_cluster_modified.yaml"
state: present

View File

@ -0,0 +1,21 @@
---
- name: destroy the rook cluster
become: false
run_once: true
local_action:
module: kubernetes.core.k8s
src: "{{ ansible_search_path[0] }}/../k8s_storage_deploy/files/rook/rook_cluster_modified.yaml"
state: absent
- name: delete the rook host storage
ansible.builtin.file:
path: /var/lib/rook
state: absent
- name: wipe parititons on storage disks
ansible.builtin.shell:
cmd: |
wipefs -a -f /dev/{{ item }}
with_items:
- sda
- sdb

View File

@ -16,6 +16,8 @@
when: vm_name not in vm_list.list_vms when: vm_name not in vm_list.list_vms
block: block:
# TODO fix the template to set data vhds as scsi bus with rotation_rate="" in disk > target
- name: create root vhd from template - name: create root vhd from template
ansible.builtin.shell: ansible.builtin.shell:
cmd: | cmd: |

View File

@ -53,12 +53,12 @@
<disk type='file' device='disk'> <disk type='file' device='disk'>
<driver name='qemu' type='qcow2'/> <driver name='qemu' type='qcow2'/>
<source file='{{ data_nvme_vhd_pool_dir }}/{{ vm_name }}_vdc.qcow2'/> <source file='{{ data_nvme_vhd_pool_dir }}/{{ vm_name }}_vdc.qcow2'/>
<target dev='vdc' bus='virtio'/> <target dev='sda' bus='scsi' rotation_rate="1"/>
</disk> </disk>
<disk type='file' device='disk'> <disk type='file' device='disk'>
<driver name='qemu' type='qcow2'/> <driver name='qemu' type='qcow2'/>
<source file='{{ data_hdd_vhd_pool_dir }}/{{ vm_name }}_vdd.qcow2'/> <source file='{{ data_hdd_vhd_pool_dir }}/{{ vm_name }}_vdd.qcow2'/>
<target dev='vdd' bus='virtio'/> <target dev='sdb' bus='scsi' rotation_rate="7200"/>
</disk> </disk>
<controller type='virtio-serial' index='0'/> <controller type='virtio-serial' index='0'/>
<interface type='bridge'> <interface type='bridge'>

View File

@ -4,4 +4,4 @@
gather_facts: true gather_facts: true
become: false become: false
roles: roles:
- k8s_storage - k8s_storage_deploy